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Abstract—Ultrasound (US) imaging is a widely used screening
tool for obstetric examination and diagnosis. Accurate acquisi-
tion of fetal standard planes with key anatomical structures is
very crucial for substantial biometric measurement and diagno-
sis. However, the standard plane acquisition is a labor-intensive
task and requires operator equipped with a thorough knowledge
of fetal anatomy. Therefore, automatic approaches are highly
demanded in clinical practice to alleviate the workload and boost
the examination efficiency. The automatic detection of standard
planes from US videos remains a challenging problem due to the
high intraclass and low interclass variations of standard planes,
and the relatively low image quality. Unlike previous studies
which were specifically designed for individual anatomical stan-
dard planes, respectively, we present a general framework for
the automatic identification of different standard planes from
US videos. Distinct from conventional way that devises hand-
crafted visual features for detection, our framework explores
in- and between-plane feature learning with a novel composite
framework of the convolutional and recurrent neural networks.
To further address the issue of limited training data, a multitask
learning framework is implemented to exploit common knowl-
edge across detection tasks of distinctive standard planes for the
augmentation of feature learning. Extensive experiments have
been conducted on hundreds of US fetus videos to corroborate
the better efficacy of the proposed framework on the difficult
standard plane detection problem.
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I. INTRODUCTION

ULTRASOUND (US) is a widely used obstetric exam-
ination tool for its advantages of low cost, mobility,

and the capability of real time imaging [1], [2]. In general,
the clinical obstetric US examination involves the proce-
dures of manual scanning, standard plane selection, biometric
measurement, and diagnosis [3]. Particularly, the accurate
acquisition and selection of the US planes that can clearly
depict the key anatomic structures of fetus is very crucial
for the subsequent biometric measurement and diagnosis. For
example, the prebirth weight of baby can be estimated from
the US measurements of head circumference, biparietal diam-
eter, abdominal circumference, and femur length. Therefore,
the selection of US planes that can depict the corresponding
organs with good quality will be very important for the accu-
rate estimation of fetus weight [4], [5]. In terms of diagnostic
purpose, the US views that can visualize the detailed facial
and cardiac structures of fetus deem to be very important for
the timely prenatal diagnosis of facial dysmorphism and con-
genital heart diseases. These US planes that can depict key
anatomic structures clearly for either biometric measurement
or disease diagnosis are generally recommended by profes-
sional organizations for the standard fetal US examination and
are often denoted as US standard planes [6]–[9].

In clinical practice, the US standard plane is commonly
acquired by hand with laborious maneuver of the probe for
searching the desirable view that can concurrently present the
key anatomical structures, see Fig. 1. Specifically, three stan-
dard planes: 1) fetal abdominal standard plane (FASP); 2) fetal
face axial standard plane (FFASP); and 3) fetal four-chamber
view standard plane (FFVSP) of heart are shown in Fig. 1. The
FFASP is determined with the presence of three key organs
of: 1) nose bone; 2) lens; and 3) eyes in the US view, whereas
the FASP is expected to include stomach bubble (SB), umbili-
cal vein (UV), and spine (SP). The definition of FFVSP is the
US plane that can clearly visualize five key cardiac structures
of: 1) left atrium; 2) right atrium; 3) left ventricle; 4) right
ventricle; and 5) descending aorta in the same image. The
FASP can be used for the estimation of fetal weight, while
the FFASP and FFVSP can be informative for the diagnosis of
facial dysmorphism and congenital heart diseases, respectively.
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Fig. 1. Illustration of different fetal standard planes for FFASP, FASP,
and FFVSP, respectively (left column illustrates the anatomical structures,
right column illustrates the corresponding US image examples, and the green
rectangles denote the ROI).

Since the clinically needed US standard planes can be very
diverse and the overall number of planes can be several dozens
for a thorough examination [10], it usually takes around tens
of minutes or more to acquire and define the US standard
planes, even for a very experienced obstetrician. Therefore, the
selection of necessary US standard planes can be one of the
most time consuming procedure in the obstetric examination.
On the other aspect, the process of acquisition and selection
of the correct US standard planes requires the operator being
proficient in maternal and fetal anatomy and highly depends
on operator’s experience. As a consequence, it would be very
challenging for an inexperienced operator or novice to fulfill
the whole task of US standard plane acquisition. Meanwhile,
since the standard plane acquisition is a knowledge-intensive
task and required planes are very diverse, the learning curve of
this procedure can be very long [11]. In such a case, the man-
power shortage can be expected in highly populated regions as
the training of a ready operator for the US fetal examination
can be costly and take a long time. Motivated by the aforemen-
tioned issues, the computerized scheme with automatic plane
detection and selection capability will be highly welcome to
alleviate the routinely obstetric workload [12] and address the
issues of medical manpower shortage on underserved popula-
tions and areas [11]. The computer-aided scheme can also help
to facilitate the training of medical novices with computerized
feedback from a score-based quality control system [13].

The topic of computer-aided US frame detection and selec-
tion is relatively new and has recently received more and more
attention in these years [8], [12], [14]–[18]. The computerized
scheme can help to lower down the operator dependency in
US scanning and improve the efficiency of post-processing
procedures with automatic mechanisms. Kwitt et al. [11]
developed a template-based method equipped with dynamic
texture model to retrieve frames containing key structures
from US video. The efficacy of the template-based method
was merely verified in phantom studies, and hence, the

applicability to the real data may need to be further explored.
In the obstetric application, quite a few computerized meth-
ods had also been proposed to identify specific standard planes
from freehand US videos. Zhang et al. [8] adopted the cascade
AdaBoost to locate the plane with gestational sac. To automati-
cally select the FASP from the US video, Ni et al. [12] used the
radial component descriptor to encode the spatial co-presence
relation of the SB, UV, and SP to retrieve the target plane.
Generally speaking, most previous methods have to find out
useful features and exploit the mathematical and spatial priors
for the detection of each specific US plane. In such a case, the
detection method designed for one standard plane, e.g., FASP,
may not be easily generalized to another standard plane, say
FFASP.

By and large, the challenges of developing the detection
algorithm for US standard planes can be summarized in four-
fold. First, the US standard plane often has high intraclass
appearance variation caused by various factors like imaging
artifacts of acoustic shadows and speckles, deformation of soft
tissues, fetal development, transducer poses [15], [19]–[21],
etc. Second, the key anatomical structures in the standard plane
may possibly appear similar to other structures. For instance,
shadows, the abdominal aorta and the inferior vena cava are
often mistakenly identified as the SB or UV in the FASP
of Fig. 1, as the shape and echogenicity of these structures
resemble to each other. Accordingly, even for experienced
obstetricians, the plane selection results can be possibly mis-
led by the low interclass variation. The third challenge lies
in that the available US fetus training image data and expert
annotations are significantly more limited and less accessi-
ble than the image data for many computer vision problems.
To obtain the US fetus data, it has to get the local institu-
tional review board (IRB) approval and consent from subjects.
Meanwhile, the annotation on the US standard planes from
long US fetus videos requires professional obstetric knowl-
edge and is a very time consuming task. With limited training
data and annotation, the capability of any US standard plane
method based on machine learning will be constrained. The
potential over-fitting issue may also be difficult to avoid. The
fourth challenge consists in that the US fetus standard planes
can be very diverse for their own diagnostic purposes, see
Fig. 1. In such a case, it will be very hard to devise a general
method that can retrieve multiple standard planes from US
fetus videos. These four challenges will impose great diffi-
culty on any off-the-shelf pattern recognition techniques, e.g.,
the template-based [11], geometrical shape-based [12], and
feature-based methods [15], [19], and hence, the algorithm for
each standard plane may need to be specifically designed.

The deep learning techniques have made breakthroughs in
the field of computer vision [22]–[25] and medical image
computing [26]–[32]. Instead of elaboration on hand-crafted
features on each respective problem in the conventional pattern
recognition pipeline, the deep learning techniques are able to
automatically discover important features and exploit the fea-
ture relation from training data [33], [34]. However, the deep
learning techniques may demand a large number of training
data, which is usually not feasible in medical image analysis
problems, to construct an effective model. To address the issue
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of training data size, the transfer learning scheme has recently
been introduced into the deep learning techniques, particu-
larly with the deep convolutional neural networks (CNNs), to
leverage the knowledge across different domains [35]–[37].
Specifically, in the application of US fetus standard plane
detection, Chen et al. [38] exploited to transfer the knowledge
from the natural scene images toward the domain of fetus for
the identification of FASP with the CNN model. The exper-
imental results suggested that the low level image cues like
corner, edges, etc., learned from the natural scene domain can
serve as good network initialization for CNN to effectively
boost FASP detection performance than the random initial-
ization setting. Although relatively satisfactory performance
had been achieved with knowledge-transferred CNN scheme
in [38], the gap between the natural scene domain and the
fetus US domain remains significant. Accordingly, the per-
formance improvement may be thus limited. Meanwhile, the
study of [38] only considered the image cues within single
plane, which may not be sufficient to address the high intr-
aclass and low interclass variation issues. As an extension
of our previous work [39], in this paper, we will explore
the interframe contextual clues, which are very informative
for human experts during the manual screening, for the US
standard plane detection problem.

To address the four challenges discussed above, this paper
attempts to leverage the framework of multitask learning, deep
learning technique, and the sequence learning model (RNN) to
detect three standard planes, i.e., FASP, FFASP, and FFVSP,
from US fetus videos. Specifically, we treat the detection of the
three standard planes as three individual tasks and jointly learn
the spatial features with the deep CNN. The shared spatial fea-
tures across the three tasks extracted from individual frame are
further transferred to the RNN for the modeling of temporal
relation. The multitask learning framework aims to uncover the
common knowledge shared across different tasks. With such
a framework, the training data on each individual task can be
helpful to other tasks, and hence, the demand on large data size
for all tasks can be potentially eased. The training of the deep
CNN is based on the multitask learning framework to identify
the useful common in-plane spatial features at the supervised
learning phase. With the consideration of learning the three
detection tasks in the same architecture, the generalization
capability of the constructed deep CNN can be thus augmented
and the issues of low interclass and high interclass varia-
tions can also be handled properly. The RNN [40]–[42] had
been widely applied to address many machine learning prob-
lems for various sequential data, e.g., speech recognition [43],
video recognition [44], [45], and machine translation [46], with
promising results. In this paper, we specifically exploit the long
short-term memory (LSTM) model to harness the interframe
contexts. The LSTM model has a good capability to solve
issues of exploding or vanishing gradients that could be possi-
bly caused by temporal signal drops, serious noise corruption,
and occlusion [47], [48]. The training of the LSTM model
is based on the extracted features from the multitask deep
CNN. Since the contextual cues are also commonly used by
medical experts in the clinical US scanning and plane selec-
tion, the modeling of interframe contexts may be helpful to

tackle the issue of low interclass variation for better detection
performance.

The performance of the proposed multitask deep and tem-
poral learning framework will be evaluated with extensive
experiments by comparing our performance with other state-
of-the-art methods in the literature. The outperformance of
the proposed method over other baseline methods corroborates
the efficacy of multitask learning and the exploit of temporal
features on this new US standard plane detection problem.
Since the proposed method does not explicitly elaborate on
the feature design, it is also easy to apply our multitask deep
and temporal learning framework for the detection of other
standard US planes.

The remainder of this paper is organized as follows.
Section II describes the proposed method in details.
Experimental results are evaluated qualitatively and quanti-
tatively in Section III. Section IV discusses the advantages
and disadvantages of our proposed method, as well as future
research directions. Finally, the conclusions are drawn in
Section V.

II. METHOD

The left part of Fig. 2 illustrates the overview of the pro-
posed model, which is a composite neural network framework
with the specialized deep CNN and RNN to exploit the in-
and between-plane features from fetus US videos. The com-
posite neural network is denoted as T-RNN throughout this
paper for short. The deep CNN model of the T-RNN frame-
work aims to uncover useful spatial features from individual
US planes. To address the issue of limited training data, the
multitask learning is implemented for the training of the deep
CNN models by treating the detection of FASP, FFVSP, and
FFASP as three individual tasks. The goal of multitask learn-
ing is to leverage the limited training data of each detection
task for better model generalization and avoidance of poten-
tial over-fitting problem. Comparing to the large domain gap
between the natural scene images and US fetus images [38],
the training data of the three detection tasks are of the same
image modality and relatively relevant. Therefore, the common
knowledge shared by the three detection tasks may be more
easily explored by the CNN model, and would be served as
a more reliable basis for the task-oriented fine-tuning. Based
on the in-plane knowledge of the CNN models learned with
the multitask learning, the between-plane relation is further
exploited with the specific RNN of LSTM model. The com-
plex contextual knowledge discovered by the LSTM model
will help to deal with the issues of low interclass variation for
the boosting of detection capability.

The whole T-RNN framework is realized in three major
steps. First, a regions of interest (ROI) classifier is jointly
trained with CNN models, named as J-CNN, across three
detection tasks of FASP, FFVSP, and FFASP. The ROI clas-
sifier of J-CNN models is expected to locate the informative
regions in each US plane of the three detection tasks. The
features extracted from the identified ROI at each frame by
the J-CNN model are further forwarded to the LSTM model
that is imparted with the between-plane knowledge to yield
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Fig. 2. Left: overview of the proposed T-RNN model. Right: architecture of the proposed J-CNN model.

TABLE I
ARCHITECTURE OF J-CNN MODEL

the corresponding task prediction scores on each US frame.
Finally, the score of each frame is further inferred by averag-
ing all prediction scores from the LSTM model. A US plane
will be identified as the standard plane when the inferred score
is larger than a defined threshold T0.

A. Joint Learning Across Multitasks

The basic structure of CNN is composed of several
pairs of alternating convolutional (C) and max-pooling
(M) layers, followed by fully connected (F) layers [49].
Previous studies have suggested that the knowledge learned
from one task domain via CNN can benefit the train-
ing of another task domain where annotated data are
limited [35], [36], [38], [50], [51]. Therefore, the CNN model
can be very suitable for multitask learning. Specifically, a
joint learning scheme with CNN across multiple detection
tasks of US standard planes is carried out, as illustrated
in the right part of Fig. 2. The matrix Ws represents
the synaptic parameters of layers from C1 to M5 and
can be adjusted in training process of the CNN model.

Via the co-training process from the annotated data of the
FASP, FFVSP, and FFASP, the common knowledge across
the three distinctive tasks can be further encoded in the
matrix Ws. The Wm (m = 1, 2, and 3 represents the task of
FFASP, FFVSP, and FASP, respectively) stands for the synap-
tic parameters of F6 and F7 layers to learn the task-specific
knowledge at the supervised training of the CNN models.
The whole learning problem is then formulated as a cost
minimization process of the joint max-margin loss function L1

L1 = λ

2

(∑
m

‖Wm‖2
2 + ‖Ws‖2

2

)

+
∑

m

∑
k

max
(
0, 1 − ymkFm

(
f s
mk; Wm

))2 (1)

f s
mk = Fs(Imk; Ws) (2)

where the first component of L1 is the regularization penalty
term and the second component is the data loss term. The cost
minimization can be realized by adjusting the synaptic matri-
ces of Ws and Wm. The importance weighting between the two
terms in (1) is controlled by the hyper-parameter λ, which is
empirically defined as 1.0 throughout this paper. In (2), the
function Fs indicates the common feature function specified
by Ws across the three tasks, whereas the function Fm is the
task-specific discriminant function controlled by matrix Wm.
The Imk in (2) stands for the kth image plane with respect to the
mth task, and the f s

mk is the output of the function Fs, i.e., the
neuron activations of M5 layer. The ymk ∈ {−1, 1} specifies
the corresponding ground truth label for the input frame Imk.
The detailed architecture configuration of the J-CNN mod-
els in this paper can be found in Table I, where padding and
nonlinear activation layers are not shown for simplified presen-
tation. Meanwhile, the rectified linear units are implemented
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in the nonlinear activation layer [52] and the dropout strategy
is employed in the fully connected layers for better general-
ization capability [53]. The learning rate is set as 0.01 initially
and gradually decreased by factor of 10, whenever the train-
ing loss stops to decrease. The constructed J-CNN models can
help to manifest the informative ROIs with respect to each task
and the corresponding extracted features will be fed into the
latter LSTM model for further processing.

B. US Standard Plane Detection via T-RNN

During the clinical US fetal examination, the contextual
cues between two consecutive scanning frames are intuitively
used by the operator for the searching of anatomical targets,
as the in-plane visual cues sometimes may not be sufficient to
support the clinical judgement. Motivated by this, the special
RNN model, i.e., the LSTM [47], is adopted here to exploit the
between-plane cues from the recorded US fetus videos. The
training of the LSTM model is based on the manifested in-
plane ROIs from the J-CNN model. Because the J-CNN model
can filter out most irrelevant image cues to the three detection
tasks, the LSTM model can further focus on the polished task-
related ROI for more efficient and effective establishment of
contextual relations between US planes.

Given the input frame Imk, the probability map of the ROI
is computed by the J-CNN model with the sliding window
technique. Specifically, for robustness of computation, each
subimage by the sliding window from the original image is
augmented into ten input samples by cropping the patches
of its center and four corners, as well as the corresponding
mirrored five patches [38]. The final score of each sliding win-
dow subimage can then be defined with the averaged J-CNN
score over its 10 varied replications. With the robust slid-
ing window scheme, the center of the final ROI identified by
J-CNN can be regarded as the location with maximal value
in the computed probability score map. Following that, the
features from the penultimate layer (i.e., the activations of
F6 layer) of the J-CNN model are extracted from the esti-
mated ROI of each frame as the inputs of the LSTM model. A
preprocessing of the US videos is implemented to facilitate the
training of LSTM model. Specifically, the long US videos are
clipped into shorter montages of fixed T frames. Accordingly,
the input video can be thus treated as consecutive samples
of montages. Each montage is denoted by a sequential fea-
ture vector: x = {x1, . . . , xt, . . . , xT} and xt ∈ R

q (q = 100
in our experiments) with the corresponding label vector of
y = {y1, . . . , yt, . . . , yT}, where yt ∈ {0, 1}. It is worth noting
that the consecutive clipped montages share overlapping US
frames for the robustness of computation.

In the traditional RNN, the back-propagation algorithm
is commonly adopted for the training. However, the back-
propagation algorithm may fall short of dealing with the
vanishing or exploding gradients [47], [48], and thus could
be sensitive to noisy or corruption in the data sequence. The
LSTM model on the other hand is able to tackle this problem
by incorporating the so-called memory cells into the network
architecture. The memory cell equips the network with better
abilities to find and exploit long range context with the arrival

Fig. 3. Illustration of LSTM model.

of sequential inputs [43], hence, it endows the LSTM model
the capability and flexibility on handling the intermittent noise,
data corruption and error. With these advantages, the LSTM
model will be quite suitable for the processing of US fetus
videos, where the image quality of some frames can possibly
be very bad and not informative.

A basic architecture of LSTM model can be constituted
with units of input gate, memory cell wired with self-recurrent
connection, forget gate and output gate, see Fig. 3 for illustra-
tion. Specifically, the element-wise nonlinear functions shown
in Fig. 3 can be either the sigmoid function in the form
of σ(x) = [1/(1 + e−x)] or the hyperbolic tangent function,
φ(x) = [(ex − e−x)/(ex + e−x)], that can squash the range of
input x into the respective range of [0, 1] and [−1, 1]. The
gates serve to modulate the interactions between the mem-
ory cell ct and its environment [54], [55]. The input gate it
can control incoming input xt whether to alter the state of the
memory cell or block it instead. The output gate ot is in charge
of the memory cell state to have an effect on hidden neurons
or not. The forget gate ft can modulate the self-recurrent con-
nection of the memory cell to steer the memory cell whether
to remember or forget the previous state ct−1. All the gates
and memory cell have the same vector size with hidden state
ht ∈ R

H (H is the number of hidden units). The update mech-
anisms of the gates and memory cells can be realized with the
following equations:

it = σ(Wxixt + Whiht−1 + bi)

ft = σ
(
Wxf xt + Whf ht−1 + bf

)
ot = σ(Wxoxt + Whoht−1 + bo)

ct = ft � ct−1 + it � φ(Wxcxt + Whcht−1 + bc)

ht = ot � φ(ct) (3)

where h0 = 0, and all W denote the weighting matrices. For
examples, Wxi is the input-input gate matrix, whereas Whi is
the matrix of hidden-input gate. In the (3), all b stand for the
bias terms with respect to each unit, and the operator � rep-
resents the element-wise multiplication. The final predictions
can be obtained by feeding ht into a softmax classification
layer over the three tasks. Thus, the parameters θ (including
all W and b) of the LSTM model can be trained by minimiz-
ing the negative logarithm loss function L2 with stochastic
gradient descent method [56]. The L2 is defined as

L2 = −
N∑

n=1

T∑
t=1

log pn(yt|xt, ht−1; θ) (4)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 4. Left: typical US standard plane detection results. Middle: several feature maps of ROIs in C1 layer. Right: sequenced predictions in the video.

where N is the total number of the clipped montages, and
pn(yt|xt, ht−1; θ) is the correctly predicted probability function
for tth frame of one training montage, given the current input
xt and previous hidden state ht−1.

III. EXPERIMENTS AND RESULTS

A. Materials

All the US images and videos involved in this paper were
acquired from the Shenzhen Maternal and Child Healthcare
Hospital during September 2011 to February 2013. The study
protocol was reviewed and approved by the ethics committee
of the same institution. Meanwhile, all participating subjects
agreed the data usage for scientific research and relevant
algorithm development. The US videos were recorded with
conventional hand-held 2-D US probe on pregnant women in
the supine position, by following the standard obstetric exam-
ination protocol. All US videos were acquired with a Siemens
Acuson Sequoia 512 US scanner, and the fetal gestational
age of all subjects ranges from 18 to 40 weeks. Each video
was obtained from one subject with 17–48 US frames for the
purpose of searching one US standard plane. More specifi-
cally, one US video can be recorded from the region of either
fetal face, abdomen, or chest to enclose the respective FFASP,
FASP, or FFVSP. The ground truths of videos were manually
annotated by an experienced obstetrician with more than five
years of clinical experience.

For the training of the ROI classifier with J-CNN, the train-
ing samples with respect to FASP, FFASP and FFVSP were
drawn from respective 300 US videos. Therefore, there are
totally 900 US videos in which each of them exclusively
contains one type of the three standard planes. For the per-
formance evaluation, the tasks of FASP and FFASP are tested

TABLE II
DETAILS OF US DATASET

with 219 videos and 52 videos, respectively, whereas the
testing data for the FFVSP task are 60 videos. The overall
involved testing US images for the FASP and FFASP are 8718
and 2278, respectively, and the number of US images for the
FFVSP is 2252. All the training and testing data were collected
by following the rigorous scanning protocol for quality assur-
ance. Details of the used US dataset in this paper can be found
in Table II. In summary, there are a total of 1231 US videos
for the training and testing of the proposed T-RNN, whereas
the overall number of involved images is 50 624. To the best of
our knowledge, this is the largest real clinical dataset available
for US standard plane detection study.

B. Visualization of Intermediate Results

To give insight on the interaction between the models of
J-CNN and LSTM during the processing of US fetus videos,
Fig. 4 demonstrates the feature maps of J-CNN for the video
frames and the task prediction result on each frame by the
LSTM. The left column of Fig. 4 shows the final detection
results of three US standard planes by the proposed method
T-RNN. It can be observed that all identified standard planes
by our algorithm can clearly depict the corresponding key
anatomic structures. The predicted scores by the LSTM model
of the three identified planes in the left column of Fig. 4
are above the threshold T0 (determined by testing on a set
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TABLE III
RESULTS OF STANDARD PLANE DETECTION ON US IMAGES

of samples from the training set in our experiments). To fur-
ther provide the visual assessment of the detection efficacy
of key anatomical structures by the J-CNN, the middle col-
umn of Fig. 4 lists the C1 feature maps [57] of the US frame
by our J-CNN model. Specifically, it can be found that the
regions with large responses of C1 layer in the feature maps
mostly match with the key anatomical structures, and thus
corroborate the effectiveness of the J-CNN model. The right
column of Fig. 4 demonstrates the sequential prediction results
by the LSTM model over the video frames. In the detection of
all FASP, FFASP, and FFVSP in Fig. 4, the prediction curves
share a good consistency with the corresponding ground truths.

C. Comparison of Quantitative Performance

To quantitatively illustrate the efficacy of the proposed
T-RNN framework, two most relevant approaches [12], [38]
are considered here for performance comparison. The first
baseline method is a feature-based approach that exploited
the geometric relation and the dedicated features for the task
of FASP detection. Specifically, a radial component model
and vessel probability map was developed in [12], denoted
as RVD, to model the anatomical prior and the geometri-
cal relationship of structures for the plane identification. The
second baseline method proposed in [38] is the most related
work to this paper. The work of [38] attempted to leverage
the transferred knowledge from natural image domains on
the detection of FASP in 2-D US videos and this method
is called as T-CNN for short, whereas the neural network
trained with random initialization is denoted as R-CNN. To
further illustrate the effectiveness of the LSTM model on
the three detection tasks, we also report the detection perfor-
mance that is attained solely with J-CNN. The performance
report of standard plane detection with only J-CNN model
can also help to elucidate that the effect of knowledge-
transferring by the multitask framework can mostly yield better
boosting of performance than the knowledge learned from
natural images. In this paper, we employ four assessment
metrics [58] including recall: R = Ntp/(Ntp + Nfn), precision:
P = Ntp/(Ntp + Nfp), F1 score: F1 = 2RP/(R + P), and accu-
racy: A = (Ntp + Ntn)/(Ntp + Ntn + Nfp + Nfn), where Ntp,
Ntn, Nfp, and Nfn represents the number of true positives, true
negatives, false positives, and false negatives, respectively.

Two comparison schemes are implemented with the basic
units of US images and videos. The image-based comparison
scheme aims to illustrate the capability of different methods
on the differentiation of standard and nonstandard planes over

Fig. 5. PR plane and ROC curves of different methods on FASP detection.

all participating testing images. The second video-based com-
parison scheme is to see whether the detection algorithms
can effectively retrieve the standard plane from an acquired
US video. Since the clinical demand for the subsequent bio-
metric measurements and disease diagnosis is to identify the
specific standard plane from the scanned US video, the video-
based comparison scheme may help to illustrate the clinical
applicability of each detection algorithm.

1) Image-Based Evaluation: The image-based comparison
results with the four assessment metrics over all comparing
methods are shown in Table III. Specifically, the deep learning-
based methods of T-RNN, J-CNN, T-CNN, and R-CNN
achieve better detection results than the method [12] does on
the FASP detection. This may suggest that the engineering
of task-specific features may sometimes turn out to be not as
useful as the features automatically underlaid by deep learning
models. Meanwhile, it can also be observed from Table III that
J-CNN and T-CNN [38] outperforms the R-CNN [38] in most
assessment metrics. Accordingly, the efficacy of knowledge-
transferring on the issues of over-fitting and limited data can be
properly substantiated. Furthermore, in most assessment met-
rics, the J-CNN attains better performance than T-CNN does.
This may suggest that the knowledge shared by the three tasks
can provide more effective model initialization and learning,
as the image domain is the same and the data of the three
tasks are relatively relevant (though still quite different). The
improvement by the knowledge derived from natural images
from ImageNet [59] is relatively limited, probably because the
underlying domain gap may be too large to boost the detection
performance significantly.

Compared with other methods, our T-RNN method achieves
the best performance for the detection of three standard planes.
Particularly, for the FASP detection task, a significant out-
performance can be observed in Table III, and hence, further
suggests the effectiveness of our composite neural network
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TABLE IV
RESULTS OF STANDARD PLANE DETECTION ON US VIDEOS

framework with the exploration of in- and between-plane
cues from US videos. To give more quantitative comparison,
the precision-recall plane and receiver operating characteristic
curves of all methods on FASP detection task are shown in
Fig. 5. The scores of area under the curve obtained by the
method of T-RNN, J-CNN, T-CNN, R-CNN, and RVD were
0.95, 0.94, 0.93, 0.90, and 0.80, respectively, further support
the outperformance of the proposed T-RNN method.

2) Video-Based Evaluation: To quantitatively assess the
capability of standard plane detection from US video by the
comparing methods, we follow the same evaluation protocols
in [12] for the definition the true positives and true negatives.
Specifically, each video is regarded as one testing sample. A
true positive identification is defined as the case that a cor-
rect standard plane can be successfully detected from a video
which encloses at least one standard plane. The true negative
case will be confirmed when no standard plane is detected
from a video that contains no standard planes. For the meth-
ods of T-RNN, J-CNN, T-CNN, and R-CNN, a US video is
regarded to have a standard plane if the highest computed score
of all member frames is larger than the defined threshold.

The quantitative results of the video-based scheme with
respect to the four assessment metrics are reported in Table IV.
It can be found that the proposed composite neural network
model of T-RNN outperforms other methods in most assess-
ment metrics for the three detection tasks. Specifically, the
attained F1 scores are 0.969, 0.832, and 0.917 for the detec-
tion of FASP, FFASP, and FFVSP, respectively, whereas the
corresponding recall values are all larger than 0.9. Therefore,
it can be suggested that most of standard planes can be
effectively identified by the T-RNN method from the US
videos. Accordingly, the potential applicability of the proposed
method to meet the clinical demand can be bright.

The detection system was implemented with the mixed
programming technology of Python and C++ based on the
open source tool Caffe [36]. It took about 15 h to train the
T-RNN model once for all. During the testing, the T-RNN
method generally took less than 1 min to identify the standard
planes from a video with 40 frames on a workstation equipped
with a 2.50 GHz Intel X-eon E5-2609 CPU and an NVIDIA
Titan GPU.

IV. DISCUSSION

In this paper, we proposed a composite neural network
framework that can effectively discover and fuse the in- and
between-plane features to identify desirable standard planes
in the US videos. The experimental results corroborate the
effectiveness of the usage of multitask framework and the

between-plane contextual relation on the detection problems
of the FASP, FFASP, and FFVSP. Specifically, by comparing
the performances between J-CNN and T-CNN in Table III, the
J-CNN model can achieve better performance on the detection
of three types of standard planes with the evaluation of all four
assessment metrics. Similarly, the J-CNN can mostly achieve
better performance as well as in the video-based comparison
scheme, see Table IV. It is worth noting that the J-CNN here
is co-trained with 900 US videos (37 376 US images), which
is significantly less than the millions of natural images in the
ImageNet dataset. Although the margin is not large, the out-
performance of J-CNN suggests that the multitask framework
can leverage the knowledge of thousands of US images as a
more effective CNN model initialization than the cross-domain
transferring learning does from millions of natural images.

Since the multitask learning is to explore sharable features
across different tasks for better generalization, it could help
those tasks which are slightly under sampled. However, learn-
ing from extremely imbalanced data remains a challenge for
most learning techniques. For those tasks with less samples,
the sharable features may need to be augmented with the
task-specific features to achieve better classification/regression
performance. For examples, in the context of semantic char-
acterization of pulmonary nodules, the studies explored the
sharable features [60], [61] across different tasks and task-
specific features to address the data imbalance issues for
the different semantic characteristics of lung nodules in the
annotations. With such exploration scheme, the prediction
performance can be improved. We happen to have balanced
training data for the three tasks in this paper, and hence, the
data imbalance problem may not affect our learning scheme
seriously. Since the data imbalance issue is a difficult problem
in many machine learning contexts, we will explore this issue
in the future study.

Referring to the performance comparison between the
T-RNN and J-CNN in Tables III and IV, the T-RNN aver-
agely achieves higher scores in both image- and video-based
schemes with perceivable margins. It thus can prove that
the contextual knowledge learned by the LSTM model can
effectively boost the detection performance over all three tasks.

In Table III, the accuracy scores are significantly higher than
their corresponding precision and recall scores with respect to
all algorithms. Referring to the equations of measurements, it
can be found that the computation of accuracy score includes
the number of true negatives in the numerator, whereas the
calculation of precision and recall scores does not. Since the
number of true negative images, i.e., the nonstandard planes,
is significantly larger than the number of the true positive
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Fig. 6. Examples of false detection results. (a) False positive of FFASP. (b) False negative of FFASP. (c) False positive of FFVSP. (d) False negative of
FFVSP.

images (standard planes), the accuracy scores are expected to
be larger than the scores of precision and recall. Therefore, the
assessment metrics of precision, recall, and F1 can be more
referential for the evaluation of all comparing algorithms.

Fig. 6 lists some examples of false positives and false
negatives by the T-RNN in the FFASP and FFVSP tasks to
illustrate the difficulty of these two tasks. The false-positively
detected planes may be similar to the standard planes but fail
to depict some key structures of each task clearly, e.g., the ocu-
lar regions in Fig. 6(a) and ventricular valves in Fig. 6(c). The
false negative detections may be due to the confusion with the
weak reconstructed acoustic signals, e.g., the left cardiac walls
in Fig. 6(d) or the presence of other structures, e.g., the bright
structures below the eyes and nose in Fig. 6(b). Generally
speaking, the tasks of FFASP and FFVSP are relatively hard
as the head and chest regions contain more bone structures and
hence the shadowing effect will be more frequently occur.

Although the efficacy of the proposed composite neural net-
work has been well demonstrated in this paper, the developed
T-RNN model still has several limitations to be addressed
in the future studies. First, the current shape of the T-RNN
model may still fall short of satisfying the goal of real-time
application. The T-RNN generally takes less than 1 min to
identify the standard plane when processing a US video with
40 images. In other words, the time to process one frame
takes around 1–2 s, and hence, the operator may easily feel
the computational lag with such a processing speed. As a con-
sequence, it is probably not able to generate real-time feedback
in the clinical US examination. The computational bottleneck
of the T-RNN model lies in the sliding window scanning of
the J-CNN model. One potential solution to address the high
computational cost of the sliding window scheme may be
the replacement of the fully connected layers with the fully
convolutional layers [62].

Instead of convolving the image with a small window, the
fully convolutional network operates on the whole image with
the result in the form of probability map [62], [63]. In this way,
the detection process can be possibly sped up as only one pass
of forward propagation is carried out and the exhaustive scan-
ning can be prevented. Furthermore, the computation for the
standard plane detection may also be accelerated to meet the
real-time constraint with the substantial code optimization and
parallelization. In this paper, we mainly focus on the algorithm
design as well as evaluate the efficacy of the proposed method.
We leave the acceleration issue for future studies. The second
limitation of the proposed T-RNN model consists in that the

current data were acquired from healthy babies and mothers.
The generalization to the pathological cases remains unknown.
To see the capability of the T-RNN model on the identifica-
tion of standard planes with abnormalities, we shall continue
to collect more clinical data with further IRB approvals.

V. CONCLUSION

The proposed composite neural network model, i.e., T-RNN,
aims to address four major challenges, i.e., high intraclass
variation, low interclass variation, limited data, diversity of
standard planes, for the computerized detection of fetus stan-
dard planes. The T-RNN is able to address the three detection
tasks of FASP, FFASP, and FFVSP with the same architec-
ture. With this advantage, the effort to specifically design the
detection model for each type of standard plane can be allevi-
ated. The multitask learning framework is introduced here to
exploit the shared knowledge across different tasks for reliable
model learning and leverage the usage of limited data we have.
Meanwhile, with the integration of in- and between-plane cues,
the high intraclass and low interclass variation can be fur-
ther tackled to achieve the current detection performance. The
computerized detection of US fetus standard planes is a rel-
atively new topic but crucial to boost the clinical practice.
Most previous methods were specifically devised on one ded-
icated type of standard plane and neglected the contextual
cues. This paper proposes a new composite framework with
better task generalization and higher identification capability
with the fusing of automatically discovered in- and between-
plane cues. Accordingly, this paper would shed a light on the
potential applicability of composite neural network models on
the processing of difficult US image data. Meanwhile, it may
be referential to the future studies on the generalization of
other US fetus standard planes, and even the plane selection
problems of other organs for the US adult examination.
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